Activated Sludge Model nr. 3 (ASM3)
The original source of ASM3 is (Gujer et al., 1999). This model has been tested and the terms standardised since, so that we decided to further include the information from (Hauduc et al., 2010) and (Corominas et al., 2010). The goal was to provide ASM3 in a machine readable form. Therefore, we also included some of our own changes in the notion to make it consistent and shorten the terms in order to be able to display full equations.
Create a process with this model using
Process("ASM3")
Add keyword arguments to overwrite the default values of the parameters. E.g.
Process("ASM3"; f_SUXCBhyd=1)
This works for all parameters below and just add multiples for every to overwrite.
When using this Model, one needs to set the initial state/initial condition in the corresponding reactor. This is because the default values are all 0
, and the some of the process equations have a division by 0
if all states are 0
!
States
Name | Description | Particle Size |
---|---|---|
$\mathtt{S\_B}\left( t \right)$ | Soluble biodegradable organics | soluble |
$\mathtt{S\_U}\left( t \right)$ | Soluble nondegradable organics | soluble |
$\mathtt{S\_O2}\left( t \right)$ | Dissolved oxygen | soluble |
$\mathtt{XC\_B}\left( t \right)$ | Particulate and colloidal biodegradable organics | particulate,colloidal |
$\mathtt{X\_U}\left( t \right)$ | Particulate nonbiodegradable organics | particulate |
$\mathtt{S\_NHx}\left( t \right)$ | Ammonia (NH4 + NH3) | soluble |
$\mathtt{S\_NOx}\left( t \right)$ | Nitrate and nitrite (NO3 + NO2) (considered to be NO3 only for stoichiometry) | soluble |
$\mathtt{S\_N2}\left( t \right)$ | Dissolved nitrogen (gas, N2) | soluble |
$\mathtt{X\_OHO}\left( t \right)$ | Ordinary heterotrophic organisms | particulate |
$\mathtt{X\_ANO}\left( t \right)$ | Autotrophic nitrifying organisms (NH4+ to NO3-) | particulate |
$\mathtt{X\_OHOStor}\left( t \right)$ | Storage compound in ordinary heterotrophic organisms (OHOs) | particulate |
$\mathtt{S\_Alk}\left( t \right)$ | Alkalinity (HCO3-) | soluble |
$\mathtt{X\_TSS}\left( t \right)$ | Total suspended solids | particulate |
Process Rates
Name | Description | Equation |
---|---|---|
$\mathtt{hy}\left( t \right)$ | Hydrolysis | $\frac{\mathtt{q\_XCBSBhyd} \mathtt{XC\_B}\left( t \right)}{\mathtt{K\_XCBhyd} + \frac{\mathtt{XC\_B}\left( t \right)}{\mathtt{X\_OHO}\left( t \right)}}$ |
$\mathtt{s\_hO2}\left( t \right)$ | Aerobic storage of XOHO,Stor | $\frac{\mathtt{q\_SBStor} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_B}\left( t \right) \mathtt{S\_O2}\left( t \right)}{\left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_SBOHO} + \mathtt{S\_B}\left( t \right) \right)}$ |
$\mathtt{s\_hAn}\left( t \right)$ | Anoxic storage of XOHO,Stor | $\frac{\mathtt{K\_O2OHO} \mathtt{n\_mOHOAx} \mathtt{q\_SBStor} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_B}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_SBOHO} + \mathtt{S\_B}\left( t \right) \right)}$ |
$\mathtt{g\_hO2}\left( t \right)$ | Aerobic growth of XOHO | $\frac{\mathtt{m\_OHOMax} \mathtt{S\_O2}\left( t \right) \mathtt{X\_OHOStor}\left( t \right) \mathtt{S\_NHx}\left( t \right) \mathtt{S\_Alk}\left( t \right)}{\left( \mathtt{K\_AlkOHO} + \mathtt{S\_Alk}\left( t \right) \right) \left( \mathtt{K\_NHxOHO} + \mathtt{S\_NHx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_StorOHO} + \frac{\mathtt{X\_OHOStor}\left( t \right)}{\mathtt{X\_OHO}\left( t \right)} \right)}$ |
$\mathtt{g\_hAn}\left( t \right)$ | Anoxic growth of XOHO (denitrification) | $\frac{\mathtt{K\_O2OHO} \mathtt{m\_OHOMax} \mathtt{n\_mOHOAx} \mathtt{X\_OHOStor}\left( t \right) \mathtt{S\_NHx}\left( t \right) \mathtt{S\_Alk}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_AlkOHO} + \mathtt{S\_Alk}\left( t \right) \right) \left( \mathtt{K\_NHxOHO} + \mathtt{S\_NHx}\left( t \right) \right) \left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_StorOHO} + \frac{\mathtt{X\_OHOStor}\left( t \right)}{\mathtt{X\_OHO}\left( t \right)} \right)}$ |
$\mathtt{er\_hO2}\left( t \right)$ | Aerobic endogenous respiration of XOHO | $\frac{\mathtt{m\_OHOOx} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_O2}\left( t \right)}{\mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right)}$ |
$\mathtt{er\_hAn}\left( t \right)$ | Anoxic endogenous respiration of XOHO | $\frac{\mathtt{K\_O2OHO} \mathtt{m\_OHOAx} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
$\mathtt{r\_hsO2}\left( t \right)$ | Aerobic respiration of XOHO,Stor | $\frac{\mathtt{m\_StorOx} \mathtt{S\_O2}\left( t \right) \mathtt{X\_OHOStor}\left( t \right)}{\mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right)}$ |
$\mathtt{r\_hsAn}\left( t \right)$ | Anoxic respiration of XOHO,Stor | $\frac{\mathtt{K\_O2OHO} \mathtt{m\_StorAx} \mathtt{X\_OHOStor}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
$\mathtt{g\_a}\left( t \right)$ | Growth of XANO (Nitrification) | $\frac{\mathtt{m\_ANOMax} \mathtt{X\_ANO}\left( t \right) \mathtt{S\_O2}\left( t \right) \mathtt{S\_NHx}\left( t \right) \mathtt{S\_Alk}\left( t \right)}{\left( \mathtt{K\_AlkANO} + \mathtt{S\_Alk}\left( t \right) \right) \left( \mathtt{K\_NHxANO} + \mathtt{S\_NHx}\left( t \right) \right) \left( \mathtt{K\_O2ANO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
$\mathtt{er\_aO2}\left( t \right)$ | Aerobic endogenous respiration of XANO | $\frac{\mathtt{m\_ANOOx} \mathtt{X\_ANO}\left( t \right) \mathtt{S\_O2}\left( t \right)}{\mathtt{K\_O2ANO} + \mathtt{S\_O2}\left( t \right)}$ |
$\mathtt{er\_aAn}\left( t \right)$ | Anoxic endogenous respiration of XANO | $\frac{\mathtt{K\_O2ANO} \mathtt{m\_ANOAx} \mathtt{X\_ANO}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2ANO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
Stoichiometric Matrix
$\mathtt{S\_B}\left( t \right)$ | $\mathtt{S\_U}\left( t \right)$ | $\mathtt{S\_O2}\left( t \right)$ | $\mathtt{XC\_B}\left( t \right)$ | $\mathtt{X\_U}\left( t \right)$ | $\mathtt{S\_NHx}\left( t \right)$ | $\mathtt{S\_NOx}\left( t \right)$ | $\mathtt{S\_N2}\left( t \right)$ | $\mathtt{X\_OHO}\left( t \right)$ | $\mathtt{X\_ANO}\left( t \right)$ | $\mathtt{X\_OHOStor}\left( t \right)$ | $\mathtt{S\_Alk}\left( t \right)$ | $\mathtt{X\_TSS}\left( t \right)$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$1 - \mathtt{f\_SUXCBhyd}$ | $\mathtt{f\_SUXCBhyd}$ | $0$ | $-1$ | $0$ | $\mathtt{i\_NXCB} + \left( -1 + \mathtt{f\_SUXCBhyd} \right) \mathtt{i\_NSB} - \mathtt{f\_SUXCBhyd} \mathtt{i\_NSU}$ | $0$ | $0$ | $0$ | $0$ | $0$ | $\mathtt{i\_ChargeSNHx} \mathtt{v1\_SNHx}$ | $- \mathtt{i\_TSSXCB}$ | $\mathtt{hy}\left( t \right) = \frac{\mathtt{q\_XCBSBhyd} \mathtt{XC\_B}\left( t \right)}{\mathtt{K\_XCBhyd} + \frac{\mathtt{XC\_B}\left( t \right)}{\mathtt{X\_OHO}\left( t \right)}}$ |
$-1$ | $0$ | $-1 + \mathtt{Y\_SBStorOx}$ | $0$ | $0$ | $\mathtt{i\_NSB}$ | $0$ | $0$ | $0$ | $0$ | $\mathtt{Y\_SBStorOx}$ | $\mathtt{i\_ChargeSNHx} \mathtt{v2\_SNHx}$ | $\mathtt{Y\_SBStorOx} \mathtt{i\_TSSXOHOStor}$ | $\mathtt{s\_hO2}\left( t \right) = \frac{\mathtt{q\_SBStor} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_B}\left( t \right) \mathtt{S\_O2}\left( t \right)}{\left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_SBOHO} + \mathtt{S\_B}\left( t \right) \right)}$ |
$-1$ | $0$ | $0$ | $0$ | $0$ | $\mathtt{i\_NSB}$ | $\frac{-1 + \mathtt{Y\_SBStorAx}}{\mathtt{i\_NO3N2}}$ | $\frac{1 - \mathtt{Y\_SBStorAx}}{\mathtt{i\_NO3N2}}$ | $0$ | $0$ | $\mathtt{Y\_SBStorAx}$ | $\mathtt{i\_ChargeSNHx} \mathtt{v3\_SNHx} + \mathtt{i\_ChargeSNOx} \mathtt{v3\_SNOx}$ | $\mathtt{Y\_SBStorAx} \mathtt{i\_TSSXOHOStor}$ | $\mathtt{s\_hAn}\left( t \right) = \frac{\mathtt{K\_O2OHO} \mathtt{n\_mOHOAx} \mathtt{q\_SBStor} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_B}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_SBOHO} + \mathtt{S\_B}\left( t \right) \right)}$ |
$0$ | $0$ | $\frac{-1 + \mathtt{Y\_StorOHOOx}}{\mathtt{Y\_StorOHOOx}}$ | $0$ | $0$ | $- \mathtt{i\_NXBio}$ | $0$ | $0$ | $1$ | $0$ | $\frac{-1}{\mathtt{Y\_StorOHOOx}}$ | $\mathtt{i\_ChargeSNHx} \mathtt{v4\_SNHx}$ | $\mathtt{i\_TSSXBio} + \frac{ - \mathtt{i\_TSSXOHOStor}}{\mathtt{Y\_StorOHOOx}}$ | $\mathtt{g\_hO2}\left( t \right) = \frac{\mathtt{m\_OHOMax} \mathtt{S\_O2}\left( t \right) \mathtt{X\_OHOStor}\left( t \right) \mathtt{S\_NHx}\left( t \right) \mathtt{S\_Alk}\left( t \right)}{\left( \mathtt{K\_AlkOHO} + \mathtt{S\_Alk}\left( t \right) \right) \left( \mathtt{K\_NHxOHO} + \mathtt{S\_NHx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_StorOHO} + \frac{\mathtt{X\_OHOStor}\left( t \right)}{\mathtt{X\_OHO}\left( t \right)} \right)}$ |
$0$ | $0$ | $0$ | $0$ | $0$ | $- \mathtt{i\_NXBio}$ | $\frac{-1 + \mathtt{Y\_StorOHOAx}}{\mathtt{Y\_StorOHOAx} \mathtt{i\_NO3N2}}$ | $\frac{1 - \mathtt{Y\_StorOHOAx}}{\mathtt{Y\_StorOHOAx} \mathtt{i\_NO3N2}}$ | $1$ | $0$ | $\frac{-1}{\mathtt{Y\_StorOHOAx}}$ | $\mathtt{i\_ChargeSNHx} \mathtt{v5\_SNHx} + \mathtt{i\_ChargeSNOx} \mathtt{v5\_SNOx}$ | $\mathtt{i\_TSSXBio} + \frac{ - \mathtt{i\_TSSXOHOStor}}{\mathtt{Y\_StorOHOAx}}$ | $\mathtt{g\_hAn}\left( t \right) = \frac{\mathtt{K\_O2OHO} \mathtt{m\_OHOMax} \mathtt{n\_mOHOAx} \mathtt{X\_OHOStor}\left( t \right) \mathtt{S\_NHx}\left( t \right) \mathtt{S\_Alk}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_AlkOHO} + \mathtt{S\_Alk}\left( t \right) \right) \left( \mathtt{K\_NHxOHO} + \mathtt{S\_NHx}\left( t \right) \right) \left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right) \left( \mathtt{K\_StorOHO} + \frac{\mathtt{X\_OHOStor}\left( t \right)}{\mathtt{X\_OHO}\left( t \right)} \right)}$ |
$0$ | $0$ | $-1 + \mathtt{f\_XUBiolys}$ | $0$ | $\mathtt{f\_XUBiolys}$ | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | $0$ | $0$ | $-1$ | $0$ | $0$ | $\mathtt{i\_ChargeSNHx} \mathtt{v6\_SNHx}$ | $- \mathtt{i\_TSSXBio} + \mathtt{f\_XUBiolys} \mathtt{i\_TSSXU}$ | $\mathtt{er\_hO2}\left( t \right) = \frac{\mathtt{m\_OHOOx} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_O2}\left( t \right)}{\mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right)}$ |
$0$ | $0$ | $0$ | $0$ | $\mathtt{f\_XUBiolys}$ | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | $\frac{-1 + \mathtt{f\_XUBiolys}}{\mathtt{i\_NO3N2}}$ | $\frac{1 - \mathtt{f\_XUBiolys}}{\mathtt{i\_NO3N2}}$ | $-1$ | $0$ | $0$ | $\mathtt{i\_ChargeSNHx} \mathtt{v7\_SNHx} + \mathtt{i\_ChargeSNOx} \mathtt{v7\_SNOx}$ | $- \mathtt{i\_TSSXBio} + \mathtt{f\_XUBiolys} \mathtt{i\_TSSXU}$ | $\mathtt{er\_hAn}\left( t \right) = \frac{\mathtt{K\_O2OHO} \mathtt{m\_OHOAx} \mathtt{X\_OHO}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
$0$ | $0$ | $-1$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $-1$ | $0$ | $- \mathtt{i\_TSSXOHOStor}$ | $\mathtt{r\_hsO2}\left( t \right) = \frac{\mathtt{m\_StorOx} \mathtt{S\_O2}\left( t \right) \mathtt{X\_OHOStor}\left( t \right)}{\mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right)}$ |
$0$ | $0$ | $0$ | $0$ | $0$ | $0$ | $\frac{-1}{\mathtt{i\_NO3N2}}$ | $\frac{1}{\mathtt{i\_NO3N2}}$ | $0$ | $0$ | $-1$ | $\mathtt{i\_ChargeSNOx} \mathtt{v9\_SNOx}$ | $- \mathtt{i\_TSSXOHOStor}$ | $\mathtt{r\_hsAn}\left( t \right) = \frac{\mathtt{K\_O2OHO} \mathtt{m\_StorAx} \mathtt{X\_OHOStor}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2OHO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
$0$ | $0$ | $\frac{\mathtt{Y\_ANO} + \mathtt{i\_CODNO3}}{\mathtt{Y\_ANO}}$ | $0$ | $0$ | $- \mathtt{i\_NXBio} + \frac{-1}{\mathtt{Y\_ANO}}$ | $\frac{1}{\mathtt{Y\_ANO}}$ | $0$ | $0$ | $1$ | $0$ | $\mathtt{i\_ChargeSNHx} \mathtt{v10\_SNHx} + \mathtt{i\_ChargeSNOx} \mathtt{v10\_SNOx}$ | $\mathtt{i\_TSSXBio}$ | $\mathtt{g\_a}\left( t \right) = \frac{\mathtt{m\_ANOMax} \mathtt{X\_ANO}\left( t \right) \mathtt{S\_O2}\left( t \right) \mathtt{S\_NHx}\left( t \right) \mathtt{S\_Alk}\left( t \right)}{\left( \mathtt{K\_AlkANO} + \mathtt{S\_Alk}\left( t \right) \right) \left( \mathtt{K\_NHxANO} + \mathtt{S\_NHx}\left( t \right) \right) \left( \mathtt{K\_O2ANO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
$0$ | $0$ | $-1 + \mathtt{f\_XUBiolys}$ | $0$ | $\mathtt{f\_XUBiolys}$ | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | $0$ | $0$ | $0$ | $-1$ | $0$ | $\mathtt{i\_ChargeSNHx} \mathtt{v11\_SNHx}$ | $- \mathtt{i\_TSSXBio} + \mathtt{f\_XUBiolys} \mathtt{i\_TSSXU}$ | $\mathtt{er\_aO2}\left( t \right) = \frac{\mathtt{m\_ANOOx} \mathtt{X\_ANO}\left( t \right) \mathtt{S\_O2}\left( t \right)}{\mathtt{K\_O2ANO} + \mathtt{S\_O2}\left( t \right)}$ |
$0$ | $0$ | $0$ | $0$ | $\mathtt{f\_XUBiolys}$ | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | $\frac{-1 + \mathtt{f\_XUBiolys}}{\mathtt{i\_NO3N2}}$ | $\frac{1 - \mathtt{f\_XUBiolys}}{\mathtt{i\_NO3N2}}$ | $0$ | $-1$ | $0$ | $\mathtt{i\_ChargeSNHx} \mathtt{v12\_SNHx} + \mathtt{i\_ChargeSNOx} \mathtt{v12\_SNOx}$ | $- \mathtt{i\_TSSXBio} + \mathtt{f\_XUBiolys} \mathtt{i\_TSSXU}$ | $\mathtt{er\_aAn}\left( t \right) = \frac{\mathtt{K\_O2ANO} \mathtt{m\_ANOAx} \mathtt{X\_ANO}\left( t \right) \mathtt{S\_NOx}\left( t \right)}{\left( \mathtt{K\_NOxOHO} + \mathtt{S\_NOx}\left( t \right) \right) \left( \mathtt{K\_O2ANO} + \mathtt{S\_O2}\left( t \right) \right)}$ |
Composition Matrix
$\mathtt{S\_B}\left( t \right)$ | $\mathtt{S\_U}\left( t \right)$ | $\mathtt{S\_O2}\left( t \right)$ | $\mathtt{XC\_B}\left( t \right)$ | $\mathtt{X\_U}\left( t \right)$ | $\mathtt{S\_NHx}\left( t \right)$ | $\mathtt{S\_NOx}\left( t \right)$ | $\mathtt{S\_N2}\left( t \right)$ | $\mathtt{X\_OHO}\left( t \right)$ | $\mathtt{X\_ANO}\left( t \right)$ | $\mathtt{X\_OHOStor}\left( t \right)$ | $\mathtt{S\_Alk}\left( t \right)$ | $\mathtt{X\_TSS}\left( t \right)$ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | $1$ | $1$ | $-1$ | $1$ | $1$ | $0$ | $\mathtt{i\_CODNO3}$ | $\mathtt{i\_CODN2}$ | $1$ | $1$ | $1$ | $0$ | $0$ |
N | $\mathtt{i\_NSB}$ | $\mathtt{i\_NSU}$ | $0$ | $\mathtt{i\_NXCB}$ | $\mathtt{i\_NXU}$ | $1$ | $1$ | $1$ | $\mathtt{i\_NXBio}$ | $\mathtt{i\_NXBio}$ | $0$ | $0$ | $0$ |
Charge | $0$ | $0$ | $0$ | $0$ | $0$ | $\mathtt{i\_ChargeSNHx}$ | $\mathtt{i\_ChargeSNOx}$ | $0$ | $0$ | $0$ | $0$ | $-1$ | $0$ |
TSS | $0$ | $0$ | $0$ | $\mathtt{i\_TSSXCB}$ | $\mathtt{i\_TSSXU}$ | $0$ | $0$ | $0$ | $\mathtt{i\_TSSXBio}$ | $\mathtt{i\_TSSXBio}$ | $\mathtt{i\_TSSXOHOStor}$ | $0$ | $-1$ |
Parameters
Name | Description | Default Value | Unit | Temperature |
---|---|---|---|---|
$\mathtt{f\_SUXCBhyd}$ | Fraction of inert COD generated in hydrolysis | $0$ | gramSnb/gramXCB | 20 |
$\mathtt{Y\_StorOHOOx}$ | Yield for XOHO growth per XOHO,Stor (Aerobic ) | $0.63$ | gXOHO/gXStor | 20 |
$\mathtt{Y\_StorOHOAx}$ | Yield for XOHO growth per XOHO,Stor (Anoxic) | $0.54$ | gramXOHO/gramXStor | 20 |
$\mathtt{Y\_SBStorOx}$ | Yield for XOHO,Stor formation per SB (Aerobic ) | $0.85$ | gramXStor/gramSB | 20 |
$\mathtt{Y\_SBStorAx}$ | Yield for XOHO,Stor formation per SB (Anoxic) | $0.8$ | gramXStor/gramSB | 20 |
$\mathtt{f\_XUBiolys}$ | Fraction of Xnb generated in biomass decay | $0.2$ | gramXU/gramXBio | 20 |
$\mathtt{Y\_ANO}$ | Yield of XANO growth per SNO3 | $0.24$ | gramXAUT/gramSNOx | 20 |
$\mathtt{i\_NSB}$ | N content of SB | $0.03$ | gramN/gramSB | 20 |
$\mathtt{i\_NSU}$ | N content of Snb | $0.01$ | gramN/gramSU | 20 |
$\mathtt{i\_NXU}$ | N content of Xnb | $0.02$ | gramN/gramXU | 20 |
$\mathtt{i\_NXCB}$ | N content of XB | $0.04$ | gramN/gramXCB | 20 |
$\mathtt{i\_NXBio}$ | N content of biomass (XOHO, XPAO, XANO) | $0.07$ | gramN/gramXBio | 20 |
$\mathtt{i\_TSSXU}$ | Conversion factor XU in TSS | $0.75$ | gramTSS/gramXU | 20 |
$\mathtt{i\_TSSXCB}$ | Conversion factor XB in TSS | $0.75$ | gramTSS/gramXCB | 20 |
$\mathtt{i\_TSSXBio}$ | Conversion factor biomass in TSS | $0.9$ | gramTSS/gramXBio | 20 |
$\mathtt{i\_TSSXOHOStor}$ | Conversion factor XSTO in TSS* | $0.6$ | gramTSS/gramXStor | 20 |
$\mathtt{i\_NO3N2}$ | Conversion factor for NO3 reduction to N2 | $\frac{ - 3 \mathtt{COD\_O} - \mathtt{COD\_neg}}{\mathtt{M\_N}}$ | gramCOD/gramN | 20 |
$\mathtt{i\_CODNO3}$ | Conversion factor for NO3 in COD | $\frac{\mathtt{COD\_N} + 3 \mathtt{COD\_O} + \mathtt{COD\_neg}}{\mathtt{M\_N}}$ | gramCOD/gramN | 20 |
$\mathtt{i\_CODN2}$ | Conversion factor for N2 in COD | $\frac{\mathtt{COD\_N}}{\mathtt{M\_N}}$ | gramCOD/gramN | 20 |
$\mathtt{i\_ChargeSNHx}$ | Conversion factor for NHx in charge | $\frac{1}{\mathtt{M\_N}}$ | Charge/gramN | 20 |
$\mathtt{i\_ChargeSNOx}$ | Conversion factor for NO3 in charge | $\frac{-1}{\mathtt{M\_N}}$ | Charge/gramN | 20 |
$\mathtt{q\_XCBSBhyd}$ | Maximum specific hydrolysis rate | $3$ | gramXCB/gramXOHO/d | 20 |
$\mathtt{K\_XCBhyd}$ | Half saturation parameter for XCB/XOHO | $1$ | gramXCB/gramXOHO | 20 |
$\mathtt{q\_SBStor}$ | Rate constant for XOHO,Stor storage | $5$ | gramXCB/gramXOHO/d | 20 |
$\mathtt{m\_OHOMax}$ | Maximum growth rate of XOHO | $2$ | per day | 20 |
$\mathtt{n\_mOHOAx}$ | Reduction factor for anoxic growth of XOHO | $0.6$ | - | 20 |
$\mathtt{K\_SBOHO}$ | Half-saturation coefficient for SB | $2$ | gramSB/m^3 | 20 |
$\mathtt{K\_StorOHO}$ | Half-saturation coefficient for XOHO,Stor/XOHO | $1$ | gramXStor/gramXOHO | 20 |
$\mathtt{m\_OHOOx}$ | Endogenous respiration rate of XOHO (Aerobic) | $0.2$ | per day | 20 |
$\mathtt{m\_OHOAx}$ | Endogenous respiration rate of XOHO (Anoxic) | $0.1$ | per day | 20 |
$\mathtt{m\_StorOx}$ | Endogenous respiration rate of XOHO,Stor (Aerobic) | $0.2$ | per day | 20 |
$\mathtt{m\_StorAx}$ | Endogenous respiration rate of XOHO,Stor (Anoxic) | $0.1$ | per day | 20 |
$\mathtt{K\_O2OHO}$ | Half-saturation coefficient for SO2 | $0.2$ | gramSO2/m^3 | 20 |
$\mathtt{K\_NOxOHO}$ | Half-saturation coefficient for SNOx | $0.5$ | gramSNOx/m^3 | 20 |
$\mathtt{K\_NHxOHO}$ | Half-saturation coefficient for SNHx | $0.01$ | gramSNHx/m^3 | 20 |
$\mathtt{K\_AlkOHO}$ | Half-saturation coefficient for SAlk | $0.1$ | molHCO3-/m^3 | 20 |
$\mathtt{m\_ANOMax}$ | Maximum growth rate of XANO | $1$ | per day | 20 |
$\mathtt{m\_ANOOx}$ | Endogenous respiration rate for XANO (Aerobic) | $0.15$ | per day | 20 |
$\mathtt{m\_ANOAx}$ | Endogenous respiration rate for XANO (Anoxic) | $0.05$ | per day | 20 |
$\mathtt{K\_O2ANO}$ | Half-saturation coefficient for SO2 | $0.5$ | gramSO2/m^3 | 20 |
$\mathtt{K\_NHxANO}$ | Half-saturation coefficient for SNHx | $1$ | gramSNHx/m^3 | 20 |
$\mathtt{K\_AlkANO}$ | Half-saturation coefficient for SAlk | $0.5$ | molHCO3-/m^3 | 20 |
$\mathtt{COD\_neg}$ | Theoretical COD of negative charge | $8$ | gramCOD/mol | |
$\mathtt{COD\_pos}$ | Theoretical COD of positive charge | $-8$ | gramCOD/mol | |
$\mathtt{COD\_C}$ | Theoretical COD of molar carbon | $32$ | gramCOD/mol | |
$\mathtt{COD\_N}$ | Theoretical COD of molar nitrogen | $-24$ | gramCOD/mol | |
$\mathtt{COD\_H}$ | Theoretical COD of molar hydrogen | $8$ | gramCOD/mol | |
$\mathtt{COD\_O}$ | Theoretical COD of molar oxygen | $-16$ | gramCOD/mol | |
$\mathtt{COD\_S}$ | Theoretical COD of molar sulphur | $48$ | gramCOD/mol | |
$\mathtt{COD\_P}$ | Theoretical COD of molar phosphorus | $40$ | gramCOD/mol | |
$\mathtt{COD\_Fe}$ | Theoretical COD of molar iron | $24$ | gramCOD/mol | |
$\mathtt{M\_N}$ | atomic molar mass of nitrogen | $14$ | gram/mol | |
$\mathtt{v1\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NXCB} + \left( -1 + \mathtt{f\_SUXCBhyd} \right) \mathtt{i\_NSB} - \mathtt{f\_SUXCBhyd} \mathtt{i\_NSU}$ | gramN/gramXCB | |
$\mathtt{v2\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NSB}$ | gramN/gramSB | |
$\mathtt{v3\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NSB}$ | gramN/gramSB | |
$\mathtt{v3\_SNOx}$ | stoichiometric correction factor for alkalinity | $\frac{\mathtt{M\_N} \left( -1 + \mathtt{Y\_SBStorAx} \right)}{ - 3 \mathtt{COD\_O} - \mathtt{COD\_neg}}$ | gramN/gramSB | |
$\mathtt{v4\_SNHx}$ | stoichiometric correction factor for alkalinity | $- \mathtt{i\_NXBio}$ | gramN/gramXBio | |
$\mathtt{v5\_SNHx}$ | stoichiometric correction factor for alkalinity | $- \mathtt{i\_NXBio}$ | gramN/gramXBio | |
$\mathtt{v5\_SNOx}$ | stoichiometric correction factor for alkalinity | $\frac{\mathtt{M\_N} \left( -1 + \mathtt{Y\_StorOHOAx} \right)}{\left( - 3 \mathtt{COD\_O} - \mathtt{COD\_neg} \right) \mathtt{Y\_StorOHOAx}}$ | gramN/gramXBio | |
$\mathtt{v6\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | gramN/gramXBio | |
$\mathtt{v7\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | gramN/gramXBio | |
$\mathtt{v7\_SNOx}$ | stoichiometric correction factor for alkalinity | $\frac{\mathtt{M\_N} \left( -1 + \mathtt{f\_XUBiolys} \right)}{ - 3 \mathtt{COD\_O} - \mathtt{COD\_neg}}$ | gramN/gramXBio | |
$\mathtt{v9\_SNOx}$ | stoichiometric correction factor for alkalinity | $\frac{ - \mathtt{M\_N}}{ - 3 \mathtt{COD\_O} - \mathtt{COD\_neg}}$ | gramN/gramXStor | |
$\mathtt{v10\_SNHx}$ | stoichiometric correction factor for alkalinity | $- \mathtt{i\_NXBio} + \frac{-1}{\mathtt{Y\_ANO}}$ | gramN/gramXBio | |
$\mathtt{v10\_SNOx}$ | stoichiometric correction factor for alkalinity | $\frac{1}{\mathtt{Y\_ANO}}$ | gramN/gramXBio | |
$\mathtt{v11\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | gramN/gramXBio | |
$\mathtt{v12\_SNHx}$ | stoichiometric correction factor for alkalinity | $\mathtt{i\_NXBio} - \mathtt{f\_XUBiolys} \mathtt{i\_NXU}$ | gramN/gramXBio | |
$\mathtt{v12\_SNOx}$ | stoichiometric correction factor for alkalinity | $\frac{\mathtt{M\_N} \left( -1 + \mathtt{f\_XUBiolys} \right)}{ - 3 \mathtt{COD\_O} - \mathtt{COD\_neg}}$ | gramN/gramXBio |
References
- Corominas, L.; Rieger, L.; Takács, I.; Ekama, G.; Hauduc, H.; Vanrolleghem, P. A.; Oehmen, A.; Gernaey, K. V.; van Loosdrecht, M. C. and Comeau, Y. (2010). New framework for standardized notation in wastewater treatment modelling. Water Science and Technology 61, 841–857.
- Gujer, W.; Henze, M.; Mino, T. and van Loosdrecht, M. (1999). Activated Sludge Model No. 3. Water Science and Technology 39, 183–193.
- Hauduc, H.; Rieger, L.; Takács, I.; Héduit, A.; Vanrolleghem, P. A. and Gillot, S. (2010). A systematic approach for model verification: application on seven published activated sludge models. Water Science and Technology 61, 825–839.